Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Sci Total Environ ; 923: 171504, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38460690

RESUMO

Insect-plant interactions are among importantly ecological processes, and rapid environmental changes such as temperature and resource fluctuations can disrupt long-standing insect-plant interactions. While individual impacts of climate warming, atmospheric nitrogen (N) deposition, and plant provenance on insect-plant interactions are well studied, their joint effects on insect-plant interactions are less explored in ecologically realistic settings. To this end, we performed five experiments with native and invasive Solidago canadensis populations from home and introduced ranges and two insect herbivores (leaf-chewing Spodoptera litura and sap-sucking Corythucha marmorata) in the context of climate warming and N deposition. We determined leaf defensive traits, feeding preference, and insect growth and development, and quantified the possible associations among climate change, host-plant traits, and insect performance with structural equation modeling. First, native S. canadensis populations experienced higher damage by S. litura but lower damage by C. marmorata than invasive S. canadensis populations in the ambient environment. Second, warming decreased the leaf consumption, growth, and survival of S. litura on native S. canadensis populations, but did not affect these traits on invasive S. canadensis populations; warming increased the number of C. marmorata on native S. canadensis populations via direct facilitation, but decreased that on invasive S. canadensis populations via indirect suppression. Third, N addition enhanced the survival of S. litura on native S. canadensis populations, and its feeding preference and leaf consumption on invasive S. canadensis populations. Finally, warming plus N addition exhibited non-additive effects on insect-plant interactions. Based on these results, we tentatively conclude that climate warming could have contrasting effects on insect-plant interactions depending on host-plant provenance and that the effects of atmospheric N deposition on insects might be relatively weak compared to climate warming. Future studies should focus on the molecular mechanisms underlying these different patterns.


Assuntos
Espécies Introduzidas , Solidago , Animais , Spodoptera , Mastigação , Insetos , Plantas
2.
Nat Commun ; 13(1): 7898, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36550129

RESUMO

Sterile alpha (SAM) and Toll/interleukin-1 receptor (TIR) motif containing 1 (SARM1) is an autoinhibitory NAD-consuming enzyme that is activated by the accumulation of nicotinamide mononucleotide (NMN) during axonal injury. Its activation mechanism is not fully understood. Here, we generate a nanobody, Nb-C6, that specifically recognizes NMN-activated SARM1. Nb-C6 stains only the activated SARM1 in cells stimulated with CZ-48, a permeant mimetic of NMN, and partially activates SARM1 in vitro and in cells. Cryo-EM of NMN/SARM1/Nb-C6 complex shows an octameric structure with ARM domains bending significantly inward and swinging out together with TIR domains. Nb-C6 binds to SAM domain of the activated SARM1 and stabilized its ARM domain. Mass spectrometry analyses indicate that the activated SARM1 in solution is highly dynamic and that the neighboring TIRs form transient dimers via the surface close to one BB loop. We show that Nb-C6 is a valuable tool for studies of SARM1 activation.


Assuntos
Axônios , Mononucleotídeo de Nicotinamida , Mononucleotídeo de Nicotinamida/metabolismo , Axônios/metabolismo , Domínios Proteicos , Proteínas do Domínio Armadillo/genética , Proteínas do Domínio Armadillo/metabolismo
3.
Nat Ecol Evol ; 6(9): 1354-1366, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35817827

RESUMO

Triploids are rare in nature because of difficulties in meiotic and gametogenic processes, especially in vertebrates. The Carassius complex of cyprinid teleosts contains sexual tetraploid crucian carp/goldfish (C. auratus) and unisexual hexaploid gibel carp/Prussian carp (C. gibelio) lineages, providing a valuable model for studying the evolution and maintenance mechanism of unisexual polyploids in vertebrates. Here we sequence the genomes of the two species and assemble their haplotypes, which contain two subgenomes (A and B), to the chromosome level. Sequencing coverage analysis reveals that C. gibelio is an amphitriploid (AAABBB) with two triploid sets of chromosomes; each set is derived from a different ancestor. Resequencing data from different strains of C. gibelio show that unisexual reproduction has been maintained for over 0.82 million years. Comparative genomics show intensive expansion and alterations of meiotic cell cycle-related genes and an oocyte-specific histone variant. Cytological assays indicate that C. gibelio produces unreduced oocytes by an alternative ameiotic pathway; however, sporadic homologous recombination and a high rate of gene conversion also exist in C. gibelio. These genomic changes might have facilitated purging deleterious mutations and maintaining genome stability in this unisexual amphitriploid fish. Overall, the current results provide novel insights into the evolutionary mechanisms of the reproductive success in unisexual polyploid vertebrates.


Assuntos
Carpas , Poliploidia , Animais , Genoma , Carpa Dourada/genética , Reprodução/genética
4.
Am J Chin Med ; 50(1): 261-274, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34983328

RESUMO

Peritoneal fibrosis (PF) is a disease caused by prolonged exposure of the peritoneum to high levels of dialysis fluid. Astragalus total saponins (ATS) is a phytochemical naturally occurring in Radix Astragali that has anti-inflammatory and anti-oxidant properties. In this study, we constructed an in vivo model of PF using 4.25% glucose-containing administered intraperitoneally to rats and incubated peritoneal mesothelial cells (PMCs) with 4.25% glucose-containing peritoneal dialysis fluid to construct an in vitro model of PF. Furthermore, siRNA of PGC-1[Formula: see text] was used to inhibit the expression of PGC-1[Formula: see text] to further investigate the mechanism of the protective effect of ATS on PF. In both in vivo and in vitro models, ATS treatment showed a protective effect against PF, with ATS reducing the thickness of peritoneal tissues in PF rats, increasing the viability of PMCs, increasing the mitochondrial membrane potential and reducing apoptosis ratio. ATS treatment also reduced the expressions of peritoneal fibrosis markers (Smad2, p-Smad2 and [Formula: see text]-SMA) and apoptosis markers (Caspase3, cleaved-Caspase3 and Bax) and restored the expressions of mitochondrial synthesis proteins (PGC-1[Formula: see text], NRF1 and TFAM) in ATS-treated peritoneal tissues or PMCs. Furthermore, in the presence of PGC-1[Formula: see text] inhibition, the protective effect of ATS on PF was blocked. In conclusion, ATS treatment may be an effective therapeutic agent to inhibit high glucose-induced in peritoneal fibrosis through PGC-1[Formula: see text]-mediated apoptosis.


Assuntos
Fibrose Peritoneal , Saponinas , Animais , Apoptose , Fibrose Peritoneal/induzido quimicamente , Fibrose Peritoneal/tratamento farmacológico , Fibrose Peritoneal/prevenção & controle , Peritônio/metabolismo , Peritônio/patologia , Ratos , Saponinas/metabolismo , Saponinas/farmacologia , Transdução de Sinais
5.
Front Microbiol ; 13: 1074064, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36601395

RESUMO

Soil microbiomes are characterized by their composition and networks, which are linked to soil nitrogen (N) availability. In nature, inorganic N dominates at one end and organic N dominates at the other end along soil N gradients; however, little is known about how this shift influences soil microbiome composition and co-occurrence networks, as well as their controls. To this end, we conducted an experiment with the host plant Solidago canadensis, which was subject to three N regimes: inorganic N-dominated, co-dominated by inorganic and organic N (CIO), and organic N-dominated. Organic N dominance exhibited stronger effects on the composition and co-occurrence networks of soil microbiomes than inorganic N dominance. The predominant control was plant traits for bacterial and fungal richness, and soil pH for keystone species. Relative to the CIO regime, inorganic N dominance did not affect fungal richness and increased keystone species; organic N dominance decreased fungal richness and keystone species. Pathogenic fungi and arbuscular mycorrhizal fungi were suppressed by organic N dominance but not by inorganic N dominance. These findings suggest that the shift from soil inorganic N-dominance to soil organic N-dominance could strongly shape soil microbiome composition and co-occurrence networks by altering species diversity and topological properties.

6.
Microb Ecol ; 84(1): 131-140, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34406446

RESUMO

Arbuscular mycorrhizal fungi (AMF) and soil amino acids both affect plant performance. However, little is known about how AMF compete for amino acids with native and invasive congeners. We conducted a factorial experiment (inoculation, native and invasive species, and amino acids) to examine the competition for amino acids between soil microbes and both native and invasive congeners. The competition for amino acids between AMF and invasive Solidago canadensis was weaker than that observed between AMF and native S. decurrens. This asymmetric competition increased the growth advantage of S. canadensis over S. decurrens. The efficacy (biomass production per unit of nitrogen supply) of amino acids compared to ammonium was smaller in S. canadensis than in S. decurrens when both species were grown without inoculation, but the opposite was the case when both species were grown with AMF. AMF and all microbes differentially altered four phenotypic traits (plant height, leaf chlorophyll content, leaf number, and root biomass allocation) and the pathways determining the effects of amino acids on growth advantages. These findings suggest that AMF could enhance plant invasiveness through asymmetric competition for amino acids and that amino acid-driven invasiveness might be differentially regulated by different microbial guilds.


Assuntos
Micorrizas , Solidago , Aminoácidos/metabolismo , Micorrizas/metabolismo , Nitrogênio/metabolismo , Raízes de Plantas/metabolismo , Plantas/metabolismo , Solo/química
7.
FEBS J ; 288(23): 6783-6794, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34213829

RESUMO

SARM1, an executioner in axon degeneration, is an autoinhibitory NAD-consuming enzyme, composed of multiple domains. NMN and its analogs, CZ-48 and VMN, are the only known activators, which can release the inhibitory ARM domain from the enzymatic TIR domain. Here, we document that acid can also activate SARM1, even more efficiently than NMN, possibly via the protonation of the negative residues. Systematic mutagenesis revealed that a single mutation, E689Q in TIR, led to the constitutive activation of SARM1. It forms a salt bridge with R216 in the neighboring ARM, maintaining the autoinhibitory structure. Using this 'acid activation' protocol, mutation K597E was found to inhibit activation, while H685A eliminated SARM1 catalytic activity, revealing two distinct inhibitory mechanisms. The protocol has also been applied to differentiate two classes of chemical inhibitors. NAD, dHNN, disulfiram, CHAPS, and TRX-100 mainly inhibited the activation process, while nicotinamide and Tweens mainly inhibited SARM1 catalysis. Taken together, we demonstrate a new mechanism for SARM1 activation and decipher two distinct inhibitory mechanisms of SARM1.


Assuntos
Ácidos/química , Proteínas do Domínio Armadillo/genética , Proteínas do Citoesqueleto/genética , Mutação , Proteínas do Domínio Armadillo/química , Proteínas do Domínio Armadillo/metabolismo , Biocatálise/efeitos dos fármacos , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/metabolismo , Dissulfiram/farmacologia , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , NAD/metabolismo , Niacinamida/farmacologia , Domínios Proteicos
8.
Proteomics ; 21(16): e2100035, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34132035

RESUMO

Arsenic pollution impacts health of millions of people in the world. Inorganic arsenic is a carcinogenic agent in skin and lung cancers. The stem-loop binding protein (SLBP) binds to the stem-loop of the canonical histone mRNA and regulates its metabolism during cell cycle. Our previous work has shown arsenic induces ubiquitin-proteasome dependent degradation of SLBP and contributes to lung cancer. In this study, we established the first comprehensive SLBP interaction network by affinity purification-mass spectrometry (AP-MS) analysis, and further demonstrated arsenic enhanced the association between SLBP and a crucial chaperone complex containing heat shock proteins (HSPs) and ERp44. Strikingly, knockdown of these proteins markedly rescued the protein level of SLBP under arsenic exposure conditions, and abolished the increasing migration capacity of BEAS-2B cells induced by arsenic. Taken together, our study provides a potential new mechanism that a chaperone complex containing HSPs and ERp44 attenuates the stability of SLBP under both normal and arsenic exposure conditions, which could be essential for arsenic-induced high cell migration.


Assuntos
Arsênio , Arsênio/toxicidade , Proteínas de Choque Térmico , Humanos , Proteínas de Membrana , Chaperonas Moleculares , Proteínas Nucleares/metabolismo , Ligação Proteica , Estabilidade Proteica , Proteômica , Fatores de Poliadenilação e Clivagem de mRNA
9.
Brief Bioinform ; 22(4)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-33126247

RESUMO

The triangular correlation heatmap aiming to visualize the linkage disequilibrium (LD) pattern and haplotype block structure of SNPs is ubiquitous component of population-based genetic studies. However, current tools suffered from the problem of time and memory consuming. Here, we developed LDBlockShow, an open source software, for visualizing LD and haplotype blocks from variant call format files. It is time and memory saving. In a test dataset with 100 SNPs from 60 000 subjects, it was at least 10.60 times faster and used only 0.03-13.33% of physical memory as compared with other tools. In addition, it could generate figures that simultaneously display additional statistical context (e.g. association P-values) and genomic region annotations. It can also compress the SVG files with a large number of SNPs and support subgroup analysis. This fast and convenient tool will facilitate the visualization of LD and haplotype blocks for geneticists.


Assuntos
Genoma Humano , Haplótipos , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único , Software , Humanos , Masculino
10.
Sci Total Environ ; 742: 140624, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-32640393

RESUMO

Both climate warming and biological invasions are primary threats to species diversity and its functioning. Although asymmetric climate warming (i.e., nighttime temperatures increasing faster than daytime temperatures) has long been recognized, its effects on plant invasions remain poorly explored. We report on one field experiment that compared the responses of 18 native plants and 17 invasive plants to three warming regimes: daytime warming (07: 00-19:00), nighttime warming (19:00-07:00), and diurnal warming (07:00-07:00). We found that invasive and native plants exhibited similar survival under the daytime and nighttime warming; however, invasive plants had lower survival than native plants under the diurnal warming. Regardless of warming conditions, invasive and native plants were similar in total biomass, leaf and root areas, biomass allocation, temperature sensitivity, and phenotypic plasticity. Across invasive and native plants, nighttime warming increased total biomass, but daytime and diurnal warming did not. In addition, three warming treatments differentially influenced temperature sensitivity or phenotypic plasticity. Our findings show that plant invaders might not profit more from asymmetric climate warming than natives in tolerance, growth, and plasticity, and also highlight that considering the disparate effects of asymmetric climate warming may be useful for assessing plant invasion outcomes.


Assuntos
Mudança Climática , Clima , Biomassa , Plantas , Temperatura
11.
J Biol Chem ; 294(42): 15293-15303, 2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31434741

RESUMO

The CD38 molecule (CD38) catalyzes biogenesis of the calcium-mobilizing messenger cyclic ADP-ribose (cADPR). CD38 has dual membrane orientations, and type III CD38, with its catalytic domain facing the cytosol, has low abundance but is efficient in cyclizing cytosolic NAD to produce cADPR. The role of cell surface type II CD38 in cellular cADPR production is unknown. Here we modulated type II CD38 expression and assessed the effects of this modulation on cADPR levels. We developed a photoactivatable cross-linking probe based on a CD38 nanobody, and, combining it with MS analysis, we discovered that cell surface CD38 interacts with CD71. CD71 knockdown increased CD38 levels, and CD38 knockout reciprocally increased CD71, and both could be cocapped and coimmunoprecipitated. We constructed a chimera comprising the N-terminal segment of CD71 and a CD38 nanobody to mimic CD71's ligand property. Overexpression of this chimera induced a dramatically large decrease in CD38 via lysosomes. Remarkably, cellular cADPR levels did not decrease correspondingly. Bafilomycin-mediated blockade of lysosomal degradation greatly elevated active type II CD38 by trapping it in the lysosomes but also did not increase cADPR levels. Retention of type II CD38 in the endoplasmic reticulum (ER) by expressing an ER construct that prevented its transport to the cell surface likewise did not change cADPR levels. These results provide first and direct evidence that cADPR biogenesis occurs in the cytosol and is catalyzed mainly by type III CD38 and that type II CD38, compartmentalized in the ER or lysosomes or on the cell surface, contributes only minimally to cADPR biogenesis.


Assuntos
Antígenos CD/metabolismo , ADP-Ribose Cíclica/metabolismo , Receptores da Transferrina/metabolismo , ADP-Ribosil Ciclase 1/genética , ADP-Ribosil Ciclase 1/metabolismo , Antígenos CD/genética , Cálcio/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Citosol/metabolismo , Células HEK293 , Humanos , Ligação Proteica , Receptores da Transferrina/genética
12.
BMC Ecol ; 19(1): 24, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-31202262

RESUMO

BACKGROUND: Invasive plants commonly occupy diverse habitats and thus must adapt to changing environmental pressures through altering their traits and economics spectra, and addressing these patterns and their drivers has an importantly ecological and/or evolutionary significance. However, few studies have considered the role of multiple biotic and abiotic factors in shaping trait variation and spectra. In this study, we determined seven leaf traits of 66 Solidago canadensis populations, and quantified the relative contributions of climate, soil properties, native plant diversity, and S. canadensis-community interactions (in total 16 factors) to leaf trait variation and spectrum with multimodel inference. RESULTS: Overall, the seven leaf traits had high phenotypic variation, and this variation was highest for leaf dry matter content and lowest for leaf carbon concentration. The per capita contribution of climate to the mean leaf trait variation was highest (7.5%), followed by soil properties (6.2%), S. canadensis-community interactions (6.1%), and native plant diversity (5.4%); the dominant factors underlying trait variation varied with leaf traits. Leaf production potential was negatively associated with leaf stress-tolerance potential, and the relative contributions to this trade-off followed in order: native plant diversity (7.7%), climate (6.9%), S. canadensis-community interactions (6.2%), and soil properties (5.6%). Climate, diversity, soil, and interactions had positive, neutral or negative effects. CONCLUSIONS: Climate, soil, diversity, and interactions contribute differentially to the leaf trait variation and economics spectrum of S. canadensis, and their relative importance and directions depend on plant functional traits.


Assuntos
Solidago , Clima , Ecossistema , Folhas de Planta , Solo
13.
Zhongguo Zhong Yao Za Zhi ; 44(6): 1258-1265, 2019 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-30989992

RESUMO

To explore the effects and molecular mechanisms of mycelium of Cordyceps sinensis(MCs)improving renal tubular epithelial cells aging induced by D-galactose,the renal proximal tubular epithelial cells(NRK-52E cells)of rats in vitro were divided into the normal group(N),the D-gal model group(D),the low dose of MCs group(L-MCs),the medium dose of MCs group(M-MCs)and the high dose of MCs group(H-MCs),and treated by the different measures,respectively.More specifically,the NRK-52E cells in each group were separately treated by 1%fetal bovine serum(FBS)or D-galactose(D-gal,100 mmol·L~(-1))or D-gal(100 mmol·L~(-1))+MCs(20 mg·L~(-1))or D-gal(100 mmol·L~(-1))+MCs(40 mg·L~(-1))or D-gal(100 mmol·L~(-1))+MCs(80 mg·L~(-1)).After the intervention for24 h or 48 h,firstly,the effects of D-gal on the protein expression levels of klotho,P27 and P16,the staining of senescence-associatedß-galactosidase(SA-ß-gal)and the activation of adenosine monophosphate activated protein kinase(AMPK)/uncoordinated 51-like kinase 1(ULK1)signaling in the NRK-52E cells were detected,respectively.Secondly,the effects of MCs on the activation of the NRK-52E cells proliferation were investigated,respectively.Finally,the effects of MCs on the protein expression levels of klotho,P27,P16and microtubule-associated protein 1 light chain 3(LC3),the staining of SA-ß-gal and the activation of AMPK/ULK1 signaling in the NRK-52E cells exposed to D-gal were examined severally.The results indicated that,for the NRK-52E cells,D-gal could cause aging,induce the protein over-expression levels of the phosphorylated AMPK(p-AMPK)and the phosphorylated ULK1(p-ULK1)and activate AMPK/ULK1 signaling pathway.The co-treatment of MCs at the medium and high doses and D-gal could significantly ameliorate the protein expression levels of klotho,P27,P16 and the staining of SA-ß-gal,suggesting the anti-cell aging actions.In addition,the cotreatment of MCs at the medium and high doses and D-gal could obviously improve the protein expression levels of LC3,p-AMPK,and p-ULK1,inhibit the activation of AMPK/ULK1 signaling and increase autophagy.On the whole,for the renal tubular epithelial cells aging models induced by D-gal,MCs not only has the in vitro actions of anti-aging,but also intervenes aging process by inhibiting autophagy-related AMPK/ULK1 signaling activation,which may be the novel molecular mechanisms of MCs protecting against aging of the renal tubular epithelial cells.


Assuntos
Autofagia , Cordyceps , Animais , Células Epiteliais , Galactose , Micélio , Ratos
14.
Ecotoxicology ; 28(4): 429-434, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30904977

RESUMO

Root exudate autotoxicity (i.e. root exudates from a given plant have toxic effects on itself) has been recognized to be widespread. Here we examined how plant species identity and soil phosphorus (P) availability influenced this autotoxicity and the possible stoichiometric mechanisms. We conducted an experiment with three species (Luctuca sativa, Sesbania cannabina, and Solidago canadensis), which were subject to four treatments consisting of activated carbon (AC) and soil P. AC addition increased the whole-plant biomass of each species under high P conditions and this AC effect varied strongly with species identity. For Solidago, the relative increase in whole-plant biomass due to AC addition was larger in the low P than in the high P. Root exudate autotoxicity differed between roots and shoots. AC addition decreased root N:P ratios but failed to influence shoot N:P ratios in three species. These findings suggest that soil P enrichment might mediate root exudate autotoxicity and that this P-mediated autotoxicity might be related to root N and P stoichiometry. These patterns and their implications need to be addressed in the context of plant communities.


Assuntos
Exsudatos e Transudatos , Fósforo/metabolismo , Raízes de Plantas/química , Sesbania/efeitos dos fármacos , Poluentes do Solo/metabolismo , Solidago/efeitos dos fármacos , Disponibilidade Biológica , Biomassa , Monitoramento Ambiental , Exsudatos e Transudatos/química , Raízes de Plantas/metabolismo , Sesbania/metabolismo , Solidago/metabolismo
15.
Sci Rep ; 9(1): 2287, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30783142

RESUMO

Development of effective therapeutics and treatment strategy to promote recovery after cerebral ischemia-reperfusion injury necessitates further understandings of the complex pathophysiology of ischemic stroke. Given that α5-GABAAR inhibition has been shown to be involved in functional recovery after stroke, the present study was designed to evaluate the effects of treatment timing of α5 GABAAR inhibition on post-middle cerebral artery occlusion (MCAO) functional recovery. To this end, we examined the effects of L655,708 (α5 GABAAR inverse agonist) treatment at 3 or 7 days post-ischemia on apoptosis and neurogenesis in the peri-infarct region, brain infarction size, as well as modified neurological severity score (mNSS) and rotarod test time in rats. Consistent with previous reports, we found that when the treatment of L655,708 was initiated at post-MCAO day 3, it did not alter the functional recovery in rats. However, when the treatment of L655,708 was initiated at post-MCAO day 7, it demonstrated beneficial effects on functional recovery in rats. Interestingly, this phenomenon was not associated with altered brain infarction size nor with changes in brain cell apoptosis. However, we found that delayed treatment of L655,708 at post-MCAO day 7 significantly increased neurogenesis in peri-infarct zone in rats. These results suggested that removing α5 GABAAR-mediated tonic inhibition after cerebral ischemia-reperfusion injury may be an effective therapeutic strategy for promoting functional recovery from stroke.


Assuntos
Agonistas de Receptores de GABA-A/uso terapêutico , Imidazóis/uso terapêutico , Infarto da Artéria Cerebral Média/tratamento farmacológico , Neurogênese/efeitos dos fármacos , Receptores de GABA-A/metabolismo , Animais , Modelos Animais de Doenças , Imunofluorescência , Marcação In Situ das Extremidades Cortadas , Infarto da Artéria Cerebral Média/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Sais de Tetrazólio/química
16.
Bioinformatics ; 35(10): 1786-1788, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30321304

RESUMO

MOTIVATION: Linkage disequilibrium (LD) decay is of great interest in population genetic studies. However, no tool is available now to do LD decay analysis from variant call format (VCF) files directly. In addition, generation of pair-wise LD measurements for whole genome SNPs usually resulting in large storage wasting files. RESULTS: We developed PopLDdecay, an open source software, for LD decay analysis from VCF files. It is fast and is able to handle large number of variants from sequencing data. It is also storage saving by avoiding exporting pair-wise results of LD measurements. Subgroup analyses are also supported. AVAILABILITY AND IMPLEMENTATION: PopLDdecay is freely available at https://github.com/BGI-shenzhen/PopLDdecay.


Assuntos
Variação Genética , Software , Ligação Genética , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único
17.
Ecol Evol ; 8(12): 6299-6307, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29988426

RESUMO

Phenology can play an important role in driving plant invasions; however, little is known about how climate warming, nitrogen (N) deposition, and invasion stages influence the phenological sequences of autumn-flowering invaders in a subtropical climate. Accordingly, we conducted an experiment to address the effects of experimental warming, N-addition, and community types on the first inflorescence buds, flowering, seed-setting, and dieback of invasive Solidago canadensis. Warming delayed the onset of first inflorescence buds, flowering, seed-setting, and dieback; N-addition did not influence these four phenophases; community types influenced the onset of first seed-setting but not the other phenological phases. Seed-setting was more sensitive to experimental manipulations than the other phenophases. The onset of first inflorescence buds, flowering, and seed-setting was marginally or significantly correlated with ramet height but not ramet numbers. Our results suggest that future climate warming might delay the phenological sequences of autumn-flowering invaders and some phenophases can shift with invasion stages.

18.
BMC Complement Altern Med ; 18(1): 205, 2018 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-29973206

RESUMO

BACKGROUND: Epithelial-to-mesenchymal transition (EMT) plays an important role in the progression of renal interstitial fibrosis, which finally leads to renal failure. Oleanolic acid (OA), an activator of NF-E2-related factor 2 (Nrf2), is reported to attenuate renal fibrosis in mice with unilateral ureteral obstruction. However, the role of OA in the regulation of EMT and the underlying mechanisms remain to be investigated. This study aimed to evaluate the effects of OA on EMT of renal proximal tubular epithelial cell line (NRK-52E) induced by TGF-ß1, and to elucidate its underlying mechanism. METHODS: Cells were incubated with TGF-ß1 in the presence or absence of OA. The epithelial marker E-cadherin, the mesenchymal markers, α-smooth muscle actin (α-SMA), fibronectin, Nrf2, klotho, the signal transducer (p-Smad2/3), EMT initiator (Snail), and ILK were assayed by western blotting. RESULTS: Our results showed that the NRK-52E cells incubated with TGF-ß1 induced EMT with transition to the spindle-like morphology, down-regulated the expression of E-cadherin but up-regulated the expression of α-SMA and fibronectin. However, the treatment with OA reversed all EMT markers in a dose-dependent manner. OA also restored the expression of Nrf2 and klotho, decreased the phosphorylation of Smad2/3, ILK, and Snail in cells which was initiated by TGF-ß1. CONCLUSION: OA can attenuate TGF-ß1 mediate EMT in renal tubular epithelial cells and may be a promising therapeutic agent in the treatment of renal fibrosis.


Assuntos
Transição Epitelial-Mesenquimal/efeitos dos fármacos , Ácido Oleanólico/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Animais , Linhagem Celular , Ratos , Transdução de Sinais/efeitos dos fármacos
19.
Zhongguo Zhong Yao Za Zhi ; 43(1): 139-146, 2018 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-29552824

RESUMO

To explore the effects and molecular mechanisms of triptolide(TP)on improving podocyte epithelial-mesenchymal transition(EMT)induced by high dose of D-glucose(HG), the immortalized podocytes of mice in vitro were divided into the normal group(N), the high dose of D-glucose group(HG), the low dose of TP group(L-TP), the high dose of TP group(H-TP)and the mannitol group(MNT), and treated by the different measures respectively. More specifically, the podocytes in each group were separately treated by D-glucose(DG, 5 mmol·L⁻¹ï¼‰or HG(25 mmol·L⁻¹ï¼‰or HG(25 mmol·L⁻¹ï¼‰+ TP(3 µg·L⁻¹ï¼‰or HG(25 mmol·L⁻¹ï¼‰+ TP(10 µg·L⁻¹ï¼‰or DG(5 mmol·L⁻¹ï¼‰+ MNT(24.5 mmol·L⁻¹ï¼‰. After the intervention for 24, 48 and 72 hours, firstly, the activation of podocyte proliferation was investigated. Secondly, the protein expression levels of the epithelial markers in podocytes such as nephrin and podocin, the mesenchymal markers such as desmin and collagen Ⅰ and the EMT-related mediators such as snail were detected respectively. Finally, the protein expression levels of Wnt3α and ß-catenin as the key signaling molecules in Wnt3α/ß-catenin pathway were examined severally. The results indicated that, HG could cause the low protein expression levels of nephrin and podocin and the high protein expression levels of desmin, collagen Ⅰ and snail in podocytes, and inducing podocyte EMT. On the other hand, HG could cause the high protein expression levels of Wnt3α and ß-catenin in podocytes, and activating Wnt3α/ß-catenin signaling pathway. In addition, L-TP had no effect on the activation of podocyte proliferation, the co-treatment of L-TP and HG could significantly recover the protein expression levels of nephrin and podocin, inhibit the protein expression levels of desmin, collagen I and snail in podocytes, thus, further improving podocyte EMT. And that, the co-treatment of L-TP and HG could obviously decrease the high protein expression levels of Wnt3α and ß-catenin induced by HG in podocytes, and inhibit Wnt3α/ß-catenin signaling pathway activation. On the whole, HG can induce podocyte EMT by activating Wnt3α/ß-catenin signaling pathway; L-TP can ameliorate podocyte EMT through inhibiting Wnt3α/ß-catenin signaling pathway activation, which may be one of the effects and molecular mechanisms in vitro.


Assuntos
Diterpenos/farmacologia , Transição Epitelial-Mesenquimal , Fenantrenos/farmacologia , Podócitos/efeitos dos fármacos , Via de Sinalização Wnt , Animais , Células Cultivadas , Compostos de Epóxi/farmacologia , Glucose , Camundongos , Proteína Wnt3A/metabolismo , beta Catenina/metabolismo
20.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-776411

RESUMO

To explore the effects and molecular mechanisms of triptolide(TP)on improving podocyte epithelial-mesenchymal transition(EMT)induced by high dose of D-glucose(HG), the immortalized podocytes of mice were divided into the normal group(N), the high dose of D-glucose group(HG), the low dose of TP group(L-TP), the high dose of TP group(H-TP)and the mannitol group(MNT), and treated by the different measures respectively. More specifically, the podocytes in each group were separately treated by D-glucose(DG, 5 mmol·L⁻¹)or HG(25 mmol·L⁻¹)or HG(25 mmol·L⁻¹)+ TP(3 μg·L⁻¹)or HG(25 mmol·L⁻¹)+ TP(10 μg·L⁻¹)or DG(5 mmol·L⁻¹)+ MNT(24.5 mmol·L⁻¹). After the intervention for 24, 48 and 72 hours, firstly, the activation of podocyte proliferation was investigated. Secondly, the protein expression levels of the epithelial markers in podocytes such as nephrin and podocin, the mesenchymal markers such as desmin and collagen Ⅰ and the EMT-related mediators such as snail were detected respectively. Finally, the protein expression levels of Wnt3α and β-catenin as the key signaling molecules in Wnt3α/β-catenin pathway were examined severally. The results indicated that, HG could cause the low protein expression levels of nephrin and podocin and the high protein expression levels of desmin, collagen Ⅰ and snail in podocytes, and inducing podocyte EMT. On the other hand, HG could cause the high protein expression levels of Wnt3α and β-catenin in podocytes, and activating Wnt3α/β-catenin signaling pathway. In addition, L-TP had no effect on the activation of podocyte proliferation, the co-treatment of L-TP and HG could significantly recover the protein expression levels of nephrin and podocin, inhibit the protein expression levels of desmin, collagen I and snail in podocytes, thus, further improving podocyte EMT. And that, the co-treatment of L-TP and HG could obviously decrease the high protein expression levels of Wnt3α and β-catenin induced by HG in podocytes, and inhibit Wnt3α/β-catenin signaling pathway activation. On the whole, HG can induce podocyte EMT by activating Wnt3α/β-catenin signaling pathway; L-TP can ameliorate podocyte EMT through inhibiting Wnt3α/β-catenin signaling pathway activation, which may be one of the effects and molecular mechanisms .


Assuntos
Animais , Camundongos , Células Cultivadas , Diterpenos , Farmacologia , Transição Epitelial-Mesenquimal , Compostos de Epóxi , Farmacologia , Glucose , Fenantrenos , Farmacologia , Podócitos , Via de Sinalização Wnt , Proteína Wnt3A , Metabolismo , beta Catenina , Metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...